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the findings of the prior paragraphs; and so on for any 
number of films. 

CONCLUDING REMARKS 
Typical experimental reflectance data, taken from [2], 

are presented in Fig. 2. The data are for perpendicular polar- 
ized radiation at a wavelength of 0633 u. The upper and 
lower sets of data correspond respectively to an aluminum 
oxide film (h = 1.71 u) on an aluminum substrate and to a 
zirconium oxide film (/I = 1.51 u) on an aluminum sub- 
strate. The solid lines represent the predicted reflectance 
versus angle distribution as evaluated from equation (4). 
Examination of the figure reveals that accurate reflect’ance 
information at Bi = 0” can be obtained by using the pro- 
perties derived here as a guide for extrapolating the data. 
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FIG. 2. Typical reflectance data 
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NOMENCLATURE 

a, constant equal to 1.0; 
A, total band absorptance; 
b, constant equal to 1.25; 
B, radiation intensity; 

specific heat at constant pressure; 
thermal conductivity; 
= q,2r,/k( To - Tb), Nusselt number ; 
heat flux ; 
radial coordinate; 
= u,2r,/v Reynolds number; 
temperature; 
velocity. 

Greek symbols 
8, = qO(to/~o)t/c,r,T,, heat-transfer parameter; 

Y, angle ; 
I4 dynamic viscosity; 
v, = p/p kinematic viscosity; 

P> density; 
r. shear stress; 
0. wave number. 

Subscripts 
b, bulk value; 
c, value at band center; 
0, evaluated at wall. 
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THE DETERMINATION of the energy transport in a radiating 

gas which is flowing in a circular tube is a difficult problem 

]lL6,16]. The complexity of the calculations have resulted in 

many studies which have omitted the contribution from 

thermal radiation. The present study clearly demonstrates 

the importance of radiative transport for steam flowing 

turbulently in a 2 in. tube at the conditions given in Table 1 

and Figs. lL3. The results also show that the radiative 

transport for steam may be accounted for by the use of the 

total band absorptance. 
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FIG. 1. Experimental and theoretical temperature profiles 
for steam. 

Table 1. Summq of results 

Re,*., B P(atm) NM,*., NU 
(exp’t., rad.) (hypothetical, 

non-rad.) 

22 100 OGO652 1.0 71.4 56.4 
15300 0.00592 1.0 56.2 44.1 
15300 0~00608 1.0 54.8 43.9 

* Properties evaluated at 7& = Tb + 0.4(T0 - TJ after 
Deissler and Eian ( 15). 
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FIG. 2. Experimental and theoretical temperature profiles 
for steam. 
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FIG. 3. Experimental and theoretrcal temperature profiles 
for steam. 
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In a previous study the heat transfer was determined in 
fully developed turbulent flow in a circular tube with a 
radiating gas, carbon dioxide, and with a non-radiating 
gas, air [S]. The present note is concerned with the turbulent 
flow of steam. The experimental apparatus is essentially 
described in reference [S] and will not be repeated here. 
The system was modified to accommodate steam and a 
detailed description is available [7]. 

The experimental .temperature profiles for steam in a 
2-in. electrically heated pipe at an axial location 108 tube 
diameters from entry are presented in Figs. l-3. An informa- 
tive comparison can be readily made between the experi- 
mental data, which obviously includes the radiation contri- 
bution, and a hypothetical non-radiating calculation which 
simply omits radiation but corresponds to the same wall 
flux, q,,, and mass flow rate rir. Thus, the bulk temperature is 
the same for both conditions. The effect of radiation is to 
increase the energy transport thereby decreasing the wall 
temperature and resulting in a flatter temperature profile. 
These results may be seen in the figures by comparing the 
experimental data points with the dotted hypothetical non- 
radiating curve. The major effect is on the wall temperature. 
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FIG. 4. Dimensionless temperature profiles for steam. 

For completeness, the results are also presented on a dimen- 
sionless basis in Fig. 4. The effect of radiation may also be 
noted by comparing the experimental value of the Nusselt 
number with that obtained from the non-radiating calcula- 
tions.* This comparison is made in Table 1 and a radiation 
contribution of approximately 20 per cent results. 

* In response to the referee’s comment we emphasize 
that a comparison between theory and experiment for a 
non-radiating case; that is, for air, was previosuly made [5]. 
Additional runs have also been made [7]. The good agree- 
ment that results provides a check on the experimental 
system and on the non-radiating calculations. 

The remaining consideration is to solve the energy equa- 
tion including the effects of conduction, convection and 
radiation in a non-gray cylindrical medium. The radiative 
flux calculation has been made by introducing the total band 
absorptance [8, 91 into equation (24) of Kesten [lo] and 
the resulting expression for the flux is given by 

n/2 m 

qmd (4 = f S(s (A[blrcosy - SV,r,y)ll 
y=o ‘,hY 

- A[b{r cos y + S(r’, r, y)}]) x $[Bo#) - Bo,,]dr’ 

where 

x cosydy (1) 

S(r’, r. y) = (r’* - r2 sin’y)f 

and the remaining quantities are defined in the nomen- 
clature. 

The infrared spectrum of steam has three bands at 2.7~ 
6.3~ and 20~ and the radiative flux is obtained by summing 
the contributions from each band. The first two are vibration- 
rotation bands and the last is a pure rotation band. The 
properties of the bands have been taken from references 
[ 1 l-141. 

The complete calculation for the total energy flux follows, 
very closely, the analysis of reference [5] and the resulting 
temperature profiles are presented as solid curves in the 
figures. Good agreement between the experimental and 
theoretical results is obtained. 
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NOMENCLATURE 

specific heat at constant pressure: 
exponential integral function defined in equation 

(7): 
Planck’s radiation function: 
stagnation enthaiphy: 
mixing length; 
effective Prandti number: 
radiant heat flux vector: 
local Reynoldsnumber: 
temperature; 
velocity, x-direction: 
velocity, y-direction; 
length, parallel to body surface; 
length. normal to body surface; 
boundary layer thickness; 

-- 
* Now Assistant Professor, Department of Mechanical 

Engineering, University of South Alabama, Mobile, Ala- 
bama, U.S.A. 

K. absorption coefficient: 

i’. laminar viscosity: 

f& effectiveviscosity: 

P. density; 
r. shear stress; 

ri. optical coordinate defined in equation (5); 

roi, optical thickness of boundary layer defined in 
equation (6): 

@, generation term for & [ 51. 

Subscripts 
D. downstream point in the finite difference grid: 
R. radiation term; 
u, upstream point in the finite difference grid: 

M‘, body surfacecondition: 
A. wavelength; 
0. reference condition: 
;ci. freestream condition. 

Bold svmbois indicate a vector auantitv. . 


